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The rquatitmn to be Considered

This paper is conccrnad with tlio application of •:ortain ccaver.

&once theorems ( fu:• probability awasuras on spaces of continuous

functions) to a problem in thi convergence of finite difference

approximations to partial differential equations.

Let 0 be a bounded open set in R  (Ruclidean r.space) with

a continuous b7undary aD, and let k( • ) and qo( • ) be nop_negative

continuous tlinctions on R  (and, occasionally, when the argument t

appears, an RM ! ) . Consider the possibly degenerate elliptic or

parabolic equations of either of the fors (1) - (s).

t• Ea (x a 4 E f	 a
iS , I  dk (x

9V(X) • k (x ), V(aa) • ®(^G)
	

(1)

tV(x) - OV (x ) - k (x ), V ( aa) • •(aG)	 (2)

Vt (x,t) + tV(x,t) . k(x,t), V(x,t) • 9(x,?)	 (3)

V(a3,t) . • (aa,t), t < Z.
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Note ttibt 'tine' flows backward in (5); a sial At treansfarnutic ►n

converts It into Lair sort stan ,tard prublm. Ot,v of the min results

o; the posjser concerns ttw ccn ►vrrgenre )f finite difference approxima.

tions to (1) . (3), as the difference interval gars to zero.

Hrub+bi tiaLlr Intarirrtattc,n

(1)	 (S) can be Riven a prubabilistle but ptyrsic&l interpretation.

In fart, this 'physical' probabilistic interpretation will be used very

heavily in the interpretation of the finite difference equations, in

the motivation of the develoluent, and in the convergence proofs. I,et

I  
be a vector of independent Wiener processes (thus gz t z; a It),

and let x  be the solution to the Ito stochastic differential equa-

tion (pooh (1), Chapter 6)

dxt • f (xt)dt + o (xt )dzto	 (4)

where f( • ) and o(•) are bounded by a real nusber K and satisfy

a uniform Lipschitz condition; e.g.,

I f (y) - t o. ,01 s KI y-xl .

xt can be defined to be continuous w.p.l. and satisfy the

r:operties+ (Doob (11)

+u (t) is of the order of t and o (b) /h '-* 0 as h -*0.
r
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I

wax ►:^ x s -390 ^ ?
	 0(t)

to "0

k(xC x0 1 x0 ) - f(x0)h • o(h)

cov (xh -x0 I x0) • o(x0 )o' (x0)h . o(h).

Define the rattrix a(x) by 2.(x) m o(x)o' (x) t: (a Ij W) and

let i be the random time at which the diffusion x  firat reaches

the boundary aa • for x0 w x e 00 and supivae that Exi < .. Then,

with Ex denotir►p the cxiroctation given the initial condition
x0 • X. under certain conditions (1) - (5) have the unique solutions
(1a) . (:^)• reap. (Dynxin (2). Chapter 13).

t
V(x) • T. j k ( cs )ds + Exm(x!)

0

V (x) • it /11e-Osk (x a )dS , Exe -l"19 (XI )	 (2a)
0

in%
V(x•t) ` Ex t ( k(xs ,•)ds + Ex t®(xTnt•^t)	 {;•)

• t	 •

where we define t n s • min (t • s) • and in (3a)• 
Ex•t 

implies that

x  • x9

since we allow ! ai,(x)) to be degenerate • by letting t be

the r + 1 at coordinate e: x• (3) becaies a special case of (1).

Then the cylinder 0 x (U•T) . 0 replaces 0 in (1) and T n t• the

finite escape time frem 3 replaces z in (1). Thus • we Will not

(la)
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treat (S) sajharatesly

Ito ctK4AA1ogta under which % 1) - are known to hnvv solutias

which arr ,tsowth enough to antisf)r	 (1) -	 (S)	 (strtn4 solutions) sre

Quite restricted; in particular, full ellipticity of t is g•-nerally

requi rvd. Yet, in rather typlc: a l situations, this cooll Lion In

violated, rtir occurs almost all thct time in stochastic Control

theory, where, in tact, one uacs (1) - (S) to represent the cost

functi"in (la) - (3a), and hopes to solve (1) - (3) in order to ob-

tain (la) - (3n). for a particular case, consider tho forawl

differential equation

	

y(r) ' cr-ly(r 1) 
400.4 

C/ a o f
	

(5)

where g it 'White Gaussian noise'. Putting (5) into the fora (4)

yields

d"1	 0	 0	 1	 0	 0
dx	 0	 0	 0	 1	 xdt + 0 ds

dx	 -c	 -c 1r	 0	 a-	 a

aAd ai
, 

No P  unless i . J u r.

Of course (1) (3) Bray be derived from other than stochastic

considerations. Yet, still, unless we know that there is a solution

to (1) - (3) with suitably smooth derivatives, and have an appropriate

discrete maxims principle available, the usual methods (see, e.`. (3))
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fcw prvv ing aoivergen v of the finite di f rerrfwe alit» ax !neat ir►r^a, as

the differarwe interval convrr tvs, do rwt apply. 1kvvrthetesn, for

each dirremk a interval, tow finite difrrmwe equatioks al.pruxiawL.

like. (1) . (5) any still Pave unique sulutioe ► s, mild it is mr-W11116ful

to ask Owtlker the solutic4is coaverfr to (la) - (Sa), as thv Inte-rval

decrc4ses to zero.

This problem will be treated by a probabilistic methcad. We

also note that even if t is the iapiacian, classical proofs of con-

vergence cannot be used if 0 has corners, since then the sound

derivatives may not be uniformly continuou& in 0.

Section 2 describes the finite difrerence equations fa be used,

and gives a useful probabilistic interpretation of them. The method

of proof is describel, and main theorems stated in section 3.

The theorems use same general conditions which are quite conwm

In applications. This is illustrateyl in the typical. (degenerate

elliptic) example of section 4. Proofs of the theorems appear in the

appendix. The treatsmnt of the discounted problem (2) . (29) is

similar to that of (1) . (la) and will not be given.

2. Finite Difference Equations and Harkov Chains

Tetminology

For equation (1) let the difference interval be h (in any

coordinate direction♦ ) and let 0  be the unit vector in the ith

?his is for convience in develoymmt. the difference interval can
certainly depend on the direction.
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(►

coordinate dirtcticat. Ouppomr tbnt a i m strictly contalnrd in a

hyp«rroub" It r1tt, m lara (.I^.,llj. t^aClnc ow •ht of nodes,kn In
k 	 by!tIr • ^(nlh,...,nrh), n I rw-.1ry! over 0, tip l2,00.).

Define ah a n Kn.

In ordnr to oxpoar Use wcthoa, and not got invuivad wit! ► the

rather long finite difraretwo equntlann writing when alxad sceuncl

deriv otivtm occur, we lot ai, • 0 fur 1 ol J. Thcrc is no trouble

In extaredine the+ eraUsod to the Sam general came.

►ors of the Tinite Difference equations

The following : inite difference approximations will be wed.

V(x*e ih) . V(x)
1	 ^

Vx I ^ V(x)	 V(x-eIh)

whore the upper tars of (6a) is used if fi (x) 1 0 0 and the lover

otheivise. (This usage will be carried throughout, upper entries in

( ) always used if fi 0, etc.)

v  x (x) -, (V(x+eih) - 2v(x) + V(x.e ih)]/b2.	 (6b)
11

?he reason for the choice (6a) will appear shortly.

if Vh(x) denotes the solution to the finite difference equa-

tions, than using (6) fr+r x t ab, (1) yields
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*r

	

a	 r	 v ( x+^ r,)	 v (x )

	

0 .- 1 -	 Ivh (x+c i^)	 2vh ( y ) • vh (x-e ih)) • Y r-	 M	 t	 h

	

i h'	 i	 vrt(x)	 vh(^t.a111)

♦ k(x)

or, by collovtitg tv m4

	

V (x+o h)	 hl f 1 • a	 Y N-9 h)	 a
Vh(x) 

M )• h	 x i -	 i	 !i	 ^ ): h	 x i	 ii	 (lb)

i	 sib	 i	 hl fi, • sii

where Q h(x) •. 2 aii • f hl fib . twine Vh (x) • 90) for x t " r . oh.
1	 !

Nerwrlto ( 1b) as (with the obvious identification of terms)

Vh(x) • 1 Vh () ,x ih) ph % x , x•e ih ) • 1 Vh (x : ih ) pn (x, x •e ih ) • pb(x)k(x)

(lc )
V(x) • O(x), for x e % Gh.

Nov the reason for the choice (6a) will became clear. Note that

since the ph (x,y) a 0 and sue to at most unity, and can be defined

for all x,y s %0 they can be cowidered to be transition probabilities

four a Narkon chain on the grid Rh * ibis is the setup used in (Kushner,

Kleieman (41), whore probL ms concerning the computation of solutions

of non-linear versions of (lc) were consider d.

Denote the sequence of random variables of this KLrkov chain by

(!k). "r is M 	 • Ek♦ bei) 0 %(x,x•ei	fih), etc. Dene

I
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r,

Kh •- inC Ok; t  f uh).

K«t wa procee4 to iavnstt tAte the betwviar as h -+ 0. OuN"c•

k (
Kh < K  < •. The solution to (lc) can by written am (b )

kh- i
vh ( x ) N 1x Y a^(!k)k(tk? • xx^(! h )•

h+•0	 ph
(ld)

3. 'rhea W thni

The probabilistic interpretation (la) of (1), and the probabilis.

tic interpretation (ld) of the finite difference system (1c), as well

as the aWlarity of the fog (1d) to a Reisam sum approximation to

(la), suggest that o. could treat the convergence problem as a problem

in the convergence (in a suttabie sense) of the matures associated

with ( Q to that t: ( xt). In fact this procedure is quite fruit.

ful, and such of the sequel is devoted to setting the problem up so

as to use the follov:%,d theorem of Oikhman and Skarokhod (5),

Chapter 9. (Actually, Theorem A is a composite of several theorems

of (.5), Chapter 9, Sections l,2.)

s	
A.	 List C(01 T) n 0 be the set of	 Rr valued continuous

!unctions an the interval	 (0,T). Let	 yp (t), y(t), t t (O,T)	 be

continuous processes with paths in the (topoloeical)space A.	 Let

This is not restrictwe in applications (see [4)). In fact the can.
dition is implied by candition (11) of Thearsm 3 whiep is also natural
In applications (sse gXampla )

I
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e,

Yp a" N Im t1w aa . a o urar In two r.t m p der OW =at'011G.C.1 yh (• )
GONOW

r(•), r=tp•  Lrt (ftw 0 % t' 9 t" * T)

Ilan ^i I. ( sup	 I y 
n W	 yn(t")i z t > 0) , 0	 (')

b -+0 n	 " It0.t"Isb

for	 t > 0. IoA they finite► discnislarwl distrIbuticros of

(yn (t)) cr4%VC- rrg- to th'ae of y(t). tot Y( • ) 1 a tK unded %n4

continuous (W.P . I.) runctianel an the ta ►polNical sp wan 0. ?bten

RYON • )) -+z'(y(.))•

In the AppetAix and section on convergence, Theorem A is ex-

;+lofted and extended to yield a solution (Theorem 3) to our problem.

The example illustrates that the conditions of Theorem 3 are quite

natural for a very large class of problems.

In order to exploit 'theorems A, the process ( Ih) must be re-

lated to a suitable continuous time process (Rh(t)).

Dw a comparison of (ld) and (Is),, we note that the 'discrete

time' cost rate is Pb(x) time the contln"ue time cost. In an

Intuitive sense, one step of the discrete processRk should take

pb(tk) units of real tine. Thus the following definition is nat%.ral.
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prfirw tht, U*W 0,111cner (tk) toy  (seat•-timan arr-awnt.. of r*% jwtions

ary do te+ttd for a ls,;► 11e l ty )

t0 « th » 0

tk • ). tAh .
001- 00*

Define ` procesa t h (t) by

!h(tk) 	 ^k

at the times ( tk)^ and for tk s t < t 	 by the linear interpolation

h	 h	 (t•tk)	 !k(tk4l-tk)

At(9k)	 At(!k)

Thus the continuous proceas j h (t) is piecewise linear and chw%es

slope at the random break points ( tk) only.

The use of jh (t) is a natural way of relating ( !k) and xt.

This can be coon tr%n the last part of the following mark and from

the calculations (8), which Indicate that the drift *d diffusion co-

effici^nts of Ih (t) converge to those of the x  process as t -00.

We use %(tk), Atk and aty (4) interchangeably. Also,, acmetises

the arguments of f  and aii are °witted'
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► 1

K ,,w %rk. at, ill ►ixtrate th. rntt l4m tiny sral lvir s, em-+ldrs• the

sca:ar rxarwl.le 0wre

dx w -x4t + ody

anal

7.VXx-xVx+k(x)•Of	 V(A)•V( -A)«0.

For x • nh, n > Of the discrete aquatians reduce to

2	 2	 2
Vh(x)	

Vh(x.h O 2+xh ; Vh(x4h /1 + k(x ^ h

o +xh	 'a +^xh	 ^a 4 x^h

• Vh (x-h ) Dh ( x i x -h) + Vh (x+h)ph (x,x+h) + p,, (x)ko,:).

A simple discrete time (continuous state space) approximation

to x  is given by

MW

Xn+ 
l • Xn - In  + a(& (ti+ IM  zA&

	 (7)

and E( rI xt )2 -• 0 as n -+ as if ad mains fixed at t. However,

while the time step, A, is constant., the me step juaps are unbounded:

as % Ine-ceases the average step size increases, etc. If we are to

bound the step size at each n (u we do with the peg w ft

apprcocL ,ting Xt), we must restrict the time a at each n in same

7
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v%y vhIch !ep rails w ► Ott only kntmi varletl,le Xtt.

This is clearly seen in the dreenera ;e case o M 0. lisen it

x^0P

Ph (x) ^ ~ vc Toc I E.'VT

which is exactly the tisw which it tetkcs a particle to ovmt the

stwulu-i distance h, if the vriocity were fixed at x during the

time of ruvtvWnt.

kquatiac ►n (2) ani (3) can be treated riralUrly to (1). ror ex.

ample, applying (G) to (2), collecting terms, and dividing by the

coefficient of V(x) yields, for x e ah,

v (x) N F

	

Vh(x+oih)	 hi fi , + 
a

ll	 Vh(X-C1h)	 a 1	 (2b)

	

-	 +h	 1	 h x	 all	 !	 h x	 hl 
f 1 ,♦ all

+ k(x )h2/%h (x)

where

Sh(x) • 2 E aii + h E fi l + h2p.

(2b) can be rewrittr.^ as

Vh (x) • Yph (x)(E Vh(x+eih)ph(x,x+elh)
i (2c)

+ ! Vh(x-eih)ph (x,x-fih) ♦ pb(x)k(x)),

1
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with lwwtlkry valuce d-rinc4 a:,

V(x) r y(x) P x t Ith . Qhl

Whe rr

Y,t,(x) ~ (l " fh x ) ~ (i • P o (x ) 4 0(h3))•
^h

The solution to (2c) is the discounted cost

^^	 N

V (x) . Y	 }- ( Ij r , (th ))k(!h)o ( t"^ • Y (II r lt h )k^(t h ) • (ed)t'	 x n••0 1.-0 h 1	 n h n	 x n-0 Oh n	 Kh

The conver3ence of (7d) to (?a) can be discussed along the some lines

as for equation ( 1) o but will not be developed here.

A Canonical Form For (Ih)•

Write the ,th component of!k 
as 

tk,r' With !k • !^ the

transition probabilities p(x,x;ep) given by (lb) yield

2

a(th -tIth n 
t),, b f	 .. %Q ) f (0-	 (84)

The average change in t h (t) in time ah(!) is merely the mean

drift of the diffusion (4) times the time interval p h (t) . Ath(t),

a further cheek of the naturalness of our time sealing.

Since the proeexs !h moves in only one direction at a time

OP

i
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! k*1 0 C t k i	
t cur Vw Ib m- xaro for Only one	 J.	 Thus the orf d i a i:exan l

e 1 ew•nt,s or the fire *, ntt r f x cm the right of

h t 	K((tk*l•!)^!ke1•!!k ` !^
Cov ( !k♦ i • ^t k	 !l

a M

k+1' OK
	 t ill.( Q

k* I' I
	 t 

k

aO) oh(! )

are zero. Mu s

Ehf l (!) 
as •Ath t! ) r i t!) f j t!) v 0(h)) for i ^
	

(sb)

while, for i	 (and wing 2aii !)

Ehf ij . 2a11 + [ A I fi l • Bt	 ) 1

• i + h(^ ri	 ^h (!) )

of + 0(b).

As a further check on the scaling of !(t), observe the

connection betreen the ' infinitesimal , properties of the ( !k) and

(x` ) processes:



(0)
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I sm	 1 in •---0---.
h	 0	 At'(x)	 o 0

coy (q h 't k 1 lk .. x)	 Cav(xo=x)
Its I

ISM 
h -♦ 0 	 AL ` ( x)	 Q -+ 0

	

n	 n h
Mrxt, wr .ay yr i to t.., as (recall 

At 	
a( .d )

h	 h 4 f k h	 h
t k• 1	 ^k	 ( tk)^'k ^k

vhere

nk a (tk. l' tk . f (tk)Atk ) 0 Mk M 0.

lot j < k. Then R(OW1 It 3 ,t j+lp t k ) • 0 . implies thst (p J ) is an

orthogonal sequence. We next live a convenient reprrscntation for the

'driving tern' 0k.

There is an orthogonal sequence (%) satisfying

21%1 ta...pt k ) & 0	 and

"l^it0#...otk) •	
k

1/2h	 h h
I'D ' ^k F-h (tkK

7
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I t

.1
'frils in obvit •t,o if }t^ (! k ) OxIAto 0 aIrv-r th. it dr•rinv

h	 h
1/2

nk ^ Atk } t'
	

nk 
•1

WvXt s letting; }^h (fit	 nut oxlat. we shc ►w (•) utvler (C1)	 (C')

or virorvas i t Md for n  l seu,l l h.

hlf i (()I r ;rnh (t)7(i) for h an

(8b-c) and (C1) - (C7) t we conclude

requires that scmme diAj;c41a1 elrttK»lt

for some- i . tit thrr ► o the ith row

IV (Eib . c) ate t (CI) - (C2 ) r

n11 art•l n t 1 1. IMict +. rrcm

that scsaidcf list tent-on or )*Is kQh)

be zero. Thus, aiik)	 r f (!k)

an41 colu , or `b 
Rre zerv, and

so is Aki i'

Then by reordering the stater. (at ^k)  and repeating the

argunt i we Wq suppose that ^k u (Ak 1 # • • • 0 % s )' • 0mr	 0 ^k

(NO 8410"''f'k,r) has linearly .'ndepet 4ent ccaeponents and that

•

y (!h) "	
0	 0	

, ^t	 (E h )	 11 (	 ' I lh,...,Rh}b k	 h	 k"b kk 0	 k0	 BhK)

!'inally o define 
oxx 

•

V be an independent a-ve

unit variance. Define % in

(i^ fwk)' where N • Hh 1/2 K) . Let

ctor Gaussian sequence with paean zero ant

^h Thus the generality of (• )plc No

Is proved.
1/2

.rexto note that from tk+1 ' tk ♦ ALkfi 
(^k ) ♦ Ft KK

*;, 
Is uniformly dominated by (say) 1/2 of its diagonal matrix, for

small h.
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vv alsu have

h( U)t V ... OcA. l i l p l	 0

Cemyerf►ence 11toorrw:

Let w-•sums u h atvl N (on the topological space n to C(O'vTj

corresix)ndi to processes t h (t) and xt , reap, t t (OjT). The con.

ditiona (Cl) . (c4) used in th-P sequel are Q; its natural for a large

clans of problema p mW are illustrated in W. exanple.

Theorem 1. Assus-

(C 1) fl (t) &d o i j (j) arcs un i 10MIX bounded and

swtlafy a uniform Lipschitz condition. (Kccell a - ov•.)

(C?) at bh equal h or h? . For real positive

Ki let

K 1 5 h it At  (!) V K28h -

(C3) Lott &(J) , have the form

0 0	 0 0
a(0 •	 0 F t[ 'IP  °(t) ' o o (t) ' ^ (t) 

• oo(t)o' lt)
n^J	 o

1
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1h

.1
^rhr=c }' (!) heya w0 forstty t,14n lr l ter: i.

Ylwsi the finity 41j%- • r641tjr.a. -listribvttemnr of th, prcerna !h(t)

eonyvrtor ts, t ►,vac of
s
 the i,rwt ns x	 ►rA fear 0 is :' s t" s 'C, etr/

t > Of

Ila Tra P (	 sup	 h(t' }	 t h (t" )l r t)	 09	 (9)
b -+0 h -•0 x ^t•-t10^r0

heinark . (G') ow ans the fc1 lowing. 1 ! Lher we al ! ow

aii (!) t t0 : 0 for same real t0, in which cane % IN h?, or we
i
al lr^w	 aii(!) + 0 and	 I f I 

I  a n0 > 0. in which case Oh • h. '!'?pus

2 cues are considci ed - one case in which there is always acne

diffusion suac•wherc, and one rasa in which there is no diffusion -

but where the velocity of
x 
	 is never	 0. In the intermediate cast

the rat i n

max At  (!

sin at (^ )

may be infinite, invalidating our proofs. ?he first cue is one of

great importance.,

for future reference, one note that (Cl) - (C2) and (8b-e )

By such convergence, we always mean convergence at the points of con-
tinuity of the relevant distributions fcr the process xt.
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iei ► Iy^ ( rcr a , e%v rc%i K)

TMr/bh
(Ca)	 F.	 ioh (1 h ) - o(tK)I^ , ' Kra

w.o

WA

Iwo	
I	 K11%

fur any ° > 0 wO i -- 1 0	 ,r.

Corollary 1. Assts (C1) - (CS). Let V( • ) be a bourAc4 con-

tinuvua function on C(0 , T) v.p.l. (relative to y). 'I%rn (with

^0 « x r x0)

^x► ^th(•)) ••?xr(x^•^

Theorcm 2 uses condition (CO), (Co"). lbow is an h0 > 0 so that

for h < hot 0 satisfies: jot l • (a ,b) be a line connwcting two

adjacent (atom coordinate directions) points (a,b) of th y+ aria r. if

a WO b are both in 0, thee. so is the line 1 connecting then.

(6) cQT be weakened in natty ways - but there soma 1 tttle point in

complicating the condition here. It is certainly satisfied (for any

For a Vector x, 1 X I 2 n F. xi. For a matrix o, X01 2 • E aii , where

a w o'o. Recall that oh (J)at (g) n Fb (!)• .

N=x is the expectation given xo • x.

•

ly
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h0) Cl,r vtonvvY G.	 la -Mud tU SAiUl: t1l" l. UP' Orat

tio-s fr•• ui Cy r lrrth t h(tj Our" RK are nj, i r..,► tawtcly VW MWW

t law . l. r .o if t h (t) lravcd Lhe 0 br%W%..rn the. ntl' Wvl n • Est

stain of tkv th , it it - no It is usird W uvcoid Ow puss ll.t i l ty

Illumtrato4 by ► 1rwre	 (:'vr al: PmAll h), Arry if the discrcte

i•roce ^ i k jtmpm t`r as a to b at t law n o it ban not ar ;ual ty loft

Go b►it the interpolat" proucol ^ h (t) lrs^YOs rl^t^t after tlsw no

li bc arm	 Adilusw (Cl) - (CS) srR1 (c'C^i. tat kC•) ar^d ^ •) Ds unt.

f analr a ms t i au«uA atrl bcwrA" cc oew open set  can t a t r► in?,	 0 + a3.

in t donota the first - (ra^t► leca ) tift-^that- tho j=xa x  looms

0 (1 h in! ( t: xt	 G)),, an;i sul:posc that T n 	 win (T -1) is

continuoun v.p.l. (lbe r.p.l, ata t - sent is relativu	 C(OiT).

pc.=.: 
v  inf (t: t h M 4 3). Therm

•

TX f	 k(xa)do . 1 i Y.x j	 (th(a) lda
0	 b -+ 0	 0

(109)
%. I

limo kx E k+(th)Oh(th)
h -•0	 so0

txqo (x	 )	 lin fx
qp (!h (lnih )) • "a txm (th ).

h -•0	 h -+0	 %
(10b)

T n s Is a !unction of the path x.
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`C w ,t4 a 3. Ad ran.- UP- co rA t t i e-nr of	 !4 ' , fo r
UNWOUND	 ---

s cart0 t at

Nx (!K leaver Ch at least ow-C by ti wr t0 ) t R > 0	 (1 1)

wlt4: 	 MU 10 11^1r1acrK1. fi t of x t (Ih mat'	 h > 00 fRr	 1 t h. Then

tile Vh (x) gives, en by ( id) canvvr4,,o tr) ( i ) _ h -* 00 uni fr ►rudy ir, x

i..: C; i.e., thr solution s n_t the finite diffwrenre _^ueetl % (tb^c)

conyrret, to thr weak solut.iari (lal of the etpuntican (1), an h -+ 0.

The aromwnta of the cxanp)lc yield Inicsorem 4, which g ncralixes

Thevrcm 3 and dcx• a not cuntnin (11) explicitly.

4. RKAM rle
OMMW

The conditions imposed in Theorftu 1-3 are rather natural for a

largo class of problems, and in order to illustrate this, their

validity will be checked for a 2--dimensional problem. It should be

clear thAt the example is typical of a large class. Although the

basic problem arose in numerical analysis, the approach taken here

as volt as the conditions, are probabilistic. Hence, the checking of

the conditions involves probabilistic calculations on the underlying

processes. Let

7
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U 0
dx1 +- tl ( xV )d t	 a	 ?	 oV `

(l )

N . fp (x)dt 4 VdA

vh• ' r7 r	 Ir	 ft ccc* ,' %nt wA Chef if satiary (CI).	 [at	 tl(x2) * X2
In	 a. We xrrk to solve

IV(x) 4 k(x) u 0 In 0

V(x) .. R+ (x) on It'
(13)

where k( • ) and Co(.) are contfnaeus wA bcmevW#

2
,m "77 t !'* (x)	 t !2(r) x e

act 	 1	 2

P:01 u Is *..no 'xu

0 a ix; Ixi j f A).

Thus (C6) holds for all h0 > 0.

Mato that t is degenerate and 0 has corners; henct,

classical theory cannot be used -W solve the conv*rgenee problm for

(13) as h -* 0.

Using (6 ) gIV&S

a



S

Yh (x • r 1 11) 111 C I I 	 Vh(x•cIh)	 0
y'`(x) j`r t^ l r11

	

Vh (x♦ esrh)	 v2/2 ♦ hl r W I	 Vh(x-erh)	 v2/2 	 k(x)h2

	

♦ .Sj (X-,_._	
v212	 ♦ 	It x	 v2/2 4 hl Q 

♦ *..r.r.

for x m Gh, the gr id in 01 on he frid N - Gh outside of,

G, de► f l ne

Vh (x) • qo(x)	 for	 x t Rr

We need only show that T n t is eontinuoun w.p.l. (relative
0

to v) on C[O,T), and that (11) holds. Brat, we prove the con-

tinuity coniition. Let m be a generic point of C(O,Tj • 0. Thus
we may write x t, the value of the process at tiaw t, more explicitly

U x  (W).

In fact, T n t is not continuous everywhere on 0. To see why,

let yt be a scalar proces s and define z(m) . inf ( t: yt(m) a k).

Consider the path yt (w) of Figure 1. Yor any continuous sequence

(gn ( e )) for which yt (m) a gh(t) t yt (m) unifmay on [O,T), we

have

inf (t: a^ (t) a %) n T • T.

•

25
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'I1r►us (T n 'I) (r-) 1 o not eut ► t 1 nuclua at the to loorreqxAW Ing to the

pnt1► 	y t (cu)	 of elgiira 1.	 IP wrv%- r, It	 Is eont inuouss 1.t	 W'.

Iteturnini, to the problc^►► OP), (15) ref it to figure P.	 It is

clear thht 1 f tftnernr. ies at the boundary oe. eir only w.l ► , zeru, th -11,

by vlrttu; of the continuity of x t (w) w.y.l., ('C n ow will be

c«t► tinvous w.l>. l . This will now br 4114,+11 to be the cane.
My observe that

(a) for x?t > 09 x,t must inervaso (he timo increases)

since dx 1 a x2dt in G. Her►ca, v.p .l. polnt!s on the boundary

section L4 (Yigurr 2) are not accessible. 81milarly for Ls.

(b) Also, since x 2 > 0 on L1 , the path car ►not be

tanprnt on Ll , and similarly for L2.

(c) Owing to the dominant effects of the diftl ►sion on

movement in the vortical direetior ►, the points on i, and L6 are
•

regular in the sense of Dynkin 	 i.e.

^P ( x Itt aa, xt+4 4 a

(d) P  (t • T) • 0

for all S a c > 0) • 0	 (14)

(e) Px (x w q1 or q2) 0 0.

In fact, (a) - (e) imply the existence of tt i (tD) > 0 w.p.l.

so that, for t (a;) f To t (aD) + 42(ao) f T r.p.l. (relative to

(in: i (m) s T) ) and
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1i

;j

distwire 
(xt(w)+e. r (000) Z el(w).

(f) Since x 1 is Contliltwus 0 V,p e .^ there are

es (1u) > of v .p.l. 0 C h (w) > 0 v.p.1. so ttatrt

dltsttawr (xt t (u,)• exterior of Z!) t eh(w)p

for all t s t  (w) 
if 

1(u)) f T.

Min+, denote by h0 the stm of the exceptional null acts in

(a) - (f) . Let cues: - K0 and i(w) s T. '*t ( an (t)) In

c(o,T) at,tisfy (as n -4 •)

sup 1 gn (t) - xt ((D)I	 0.
MST

Let e > 0 be arbitrary.	 Then by (a) -	 (f),, for large	 n, the first

time gn (t) leaves	 0	 must be within a	 of t (w).	 This proves the

continuity v.p.l. of i(w) n T . (t n T) (m).

Only (11) retrains to be proved. Let N a tO
/K

1h2. for any

t0 > 0 ,9 and de ri ne

It♦ (^) number of positive steps of tk 2 ^ k f r

II- (t) M number of negative steps of tk '2, k f N.

A sufficient condition for (11) is



1

q
h

(x)	 1'x (14, 0 _ ►t- (! ) r #"=1' NO 	>

For acm rdal K. vR ht.ve the b;nuOOR

. Kh % Px ( l k4t02 - tk,2 . h) 4 Z + Kh.

Got (uh	 be a Wirkov prwcas can ( 0,tl,12,...) with trariaiticm

probability

!'(uk♦1 auk ♦ 1) n 7-Khal	 H(uk♦l^^+k-

Deflne N= (u) wialocously to N  Q ) . Then

ah (x) s qh u (x) p P(M♦ (u) - N- (u) V 2A/h)oi	 i

The wan value of uk+l - uk is .2DO and its variance is 1 - (2kh)2.

Nov

N
♦ 	 -

(u)-N (u) -N(-2kh) 
2A/h42Nkhq O)0Ph, u	 t

rx 4- TW7	 rx ri.—(2x—h )7

The left tern in brackets converses in distribution to the

normal zero mean and unity variance random variat , te, and the right

hand term in the brackets is strictly less than scams Y- 3 < « for

small b. Thus. for all Beall h

•

r^G

i
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a

rI

which proven (11).

T,,, crux110 OL4vP in the proof of (! 1), the buurvlin t! of thr

drlft in on- direction, can caally be ren rat ixrd. In fart, (11)

holds if

0	 0
a^

0	 FO

-1
where10 hnn uniformly bounded terms in 0.

In fact, the example can be generalized to yield (The proof is

a combination of the arguments of the example and of Theorem 3 and

Is omitted.)

Thy 4. As.. me (CI) - (0) dd (c6). Let ac • 
H1 + H2+ -fire

points on H are rel2lar for the process x in the sense (14) of

Dynkin (2), and an 712 are inaccessable v.p,l, for the process xt.

If k(-) and 4p(.) are continuous on a neighborhood containing a,

Lh_ Vh (x) -+ V(x).

OP
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Ai':Y MIX

ne proof of Thavr= 1 will lw dcvclopad vin n series vf iwads-ir.

Th.r sysat,otn	 K or	 K i 	arc used ror any conatant; values at.y clivij,

frog ai+oea to USILCV.

irau. 1, As +̂ (C1)	 (C5). Defit,e th-t• farcrrr an ( 2
1t) 

with
mss	 ^

initiot con-lition + h 	 ^^	 t 	 an4

^k+ 1 r % .0 thk)^tk a 
(ryk)u^

where Atk • ©th (!k) . Let h • ?/K.

sup N1'Ih 	 !h 1 2 -40	 (Al)
WkkO

as h -+ 0. De fine 1h (t) as the linear interpolation of r h i.e.,

for ti 5 t < tk+lp

h	 h	 (t•tk)	 h	 (tk+l-t)
(t ) ^1 (tk,* l ^^ ' ^1 (tkF	 It 	•

	

k	 k

Then if the multidimensional distributions of the process qh(t)

have liialts, so do those corresp-pnding to the limit of the h 

process and they are the same. (Note that the + h and ^h equations

differ only its that 1/2 is replaced by its limit a.)

Proof. Let Y.. k be the minimal a-algebra over which^_^
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P9

n
(nui ► 1 % k)	 1:i v& •• %iurablr. Fur stIm ltrlty or ys ittmt j yr •iru_p the

InArx h = r
i p ! i' At' i i u'I'	 ^hokc 

eta• wh o- th e' vcr nt . -c.n.f r:^r, will erts r.

Math e M atkl ryes r is	 art ^k no-asurabie i an-I we usse the

riotaticm AL  - At(I k). Yrnm

%+l - tk4l • % - t k + I r(%,) - r(t k ) lntk • t o ( ry),) ' Oh(td104^0

wr can write

Mk* l a K1 hk+1 - t o o l l 2 • (N 4 2IN - t k)' ( f (%) - M k )  lALk)

+ xi f ('lk ) - t(t k )1 2Atk + SOV ON) - o(e WI C (%) - o(tk)h^

+ 1:(I01I0(r1k) - o(e k)"Io(tk) . 0h(tk )1%)

♦ ^Io(e k )	 oh (e k )l'C o (!k ) - oh(tk).^-^k

a A + A+ C + D+ 2.

Using the Lipschitz condition (C1),, and (C2) 0 yields, for sash

r*al Kf

A f Nk (1+2K%)

D f K% 2	 i}i

S

C f KKI%

I DI f K%% + K%1 o (tk) - oh (tk) 12

131 f K%1 0 (tk) - %(tk)12•

OP
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Tt1vs

Kk4 l ^ NOOKsbh.K	 h4%) • K,^Io(i ) 	 o ' •'k )Iph^	 k 	 h

W"

>t
1!k * K 'I ( i *K6%) M j0(t	 ah(t01 ? %' 7 la(!,)	 ah ( ! 3 )1 2 ^•

J000

Yhon (AL) follows free (C") WA

M	 T/K2bh
(14K6%) - (1 • Kbsh )	 s exp K6T/K20

►inally ,, since the ninbo r of terms of the process ( th which

effect OW t h (t) process on (0,T) Is at Most T/K2bh and at

least T/k lbh, and since % -• 0 unirorsly as h -• 0, for r f 14,

we have

11 th (t) • gh (t)1 2 .00

on (O,T]o as h -+ 0. Q.t.D.

2* As.— (CI) . (C3) . L_et b • T/K2%^ " ' t/K2%'

Then for n 9 M^

•

50
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O',X I !h	 s K (1^1 ^h12)^K^
wk--O

V ̂ %A I I h . t  ? 	 Kt (1+ 1 toff ^ )
am 00

where K is a roll ntmk -ter. "t sans* reautt hot is ror the (*h)

ocrAa.

Proof. Agnin drop the index h ots h, ^h 0 a h 0 ;, etc., whe - re

Convenient. Then

! k, l	 to • Ak • hk
k

A  « F. f( ! i)Atii
0

gg k

0

1w (8b-c), the oh also satisfy a unifoits tipschitr coruiition (also
uni forty in h for small h) and are (bounded uni rosul.y in h for

mall h). Write Y  « sax Il it il one  	 syk•
Ica i

Iw

I lk-61
12 

a %(I *012 ' 1 Ak 1 2 4 
1%1 2 	 (A2)

and

.ax I1 2 K E I f(! )eot 1 5 x E (l.l a 12)
"k	

(^)
nsk>o	 0	

i i	 0	 i °^
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1'4rlhr r ► ►+k 	 i e x es, r t l^,a;a ! c ^►a t (tk ,^,t, ^ 1) ^ Chti ^.;,. ^ `l )

h

it I ? ` ru`I "  I a t KX ): I d Q 1 ) I
WIL'O	 0

n
KY y : (i • 1 a 11?)r.

0

Cunt,inin i, (A. , ) . (/l', ) p takir44 expee tail. Ims, wv.i replowine Li l ' .►y

t1w nnjt ►rant K 1 , yields

Mn1 s IMO + K (n%# 
n%41'. Mt

kQh ) ,	 (ti )
"b 0

which is bounded at-eve by the crlwession given in the I nm for

n ► ltb0
The proof of the other s tats mwnts of the 1 aw► are similar and

i
are aaitted. Q.R.D.

We next cceWsre qh (t) to a process whose distributions are

easier to relate to those of xt.

Divide (0,T) into intervals with endpoints O,A,?Q,...,N A
i.l

where A >> K1Nh . Recall the definition ti • E ate. Define
s•0

ah so 0 and the (randan) integer ai by	 1 Max (n: th f
Define the sets of integers

I1+1 ( r: th s thr < th j.
i	 i+1

}V

(A l , )
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Arran, vv Drop tl:r inJx!• h vtwrry etinvvistoist. 'Mg-tt (uo tar n i rear

n i , rtt'•)

A . Pxl% 
a 

to1+1 - to 
i 
s A + Pxlhh

an !

). At w t	 . t
r4l 1 r	 ^1+1	 ni

Coy F. o	 Vq (t	 .t ).
rel1 r	 X1.01 ni

(A6)

t.Rt y0 • p1_, w,! for each h derine the process

yk♦1 = yk + t^k )	 Ats + e^ryk )	 ease
sulk, ;	 sslh+l

(Ate )

Lemm 3. (Again, cult W o y n %,, r-n +m tent). Assume

(CO - (C3)- 1twn

Ila	 sup xj yk -  x ! ' v.
h -• 0 ^tks^ (AB)

lot y (t) be the 1lAearl,7 interpolated process r_ ith jr

oa	

(tp) yi.
i

Then the aultidim aial distributions of ^ h (t) tend (an h 0)

to the licit (as h -* 0  than a -+ 0) of those for the process y(t).

OP



1
•

^4

00

ski 1	 ck •	 }	 r(yk) 	 r ('1s ) In^ M •	 (yk) 	 8) )m a
stlKO 1	 OCT k4 1

t•le k•1 2
1WRX•1 • Nk ♦ A • b•C

where (ureiirdoxed swmn are over s s 1 k• 1)

A	 (try k) . f('Is)lasi2

6/K2-h

00041K,#obh	 2	 2lte• £	 (ZIyk- ?J% I • KI '^,U•s- fj
"k I ) °hs •0

k K (A) 2 N ' KA's

where kern 2 Is usee In the las t s tep,

8	 K^ (ork ) - ^' ls))a^s^2

E Eio trk) ^N)I`^,
411^ah	

2	 2

0
	 \..-\ I

f L N 4 &'

where, ,,pain, Um a 2 is urad in the lut step.
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C	 K PC , (^' Yk ^ - ttha) )At,

ICI'PfI#'kl`}.'I?` trek ) - r (h^)t^al

s KM	 }' Ah Y /.1 yk. h^ r 
1 2^h 1/2

W*o	 ...o

VJ^/'' I 
NA? • KAY )' /`'

+ ,63/2 1

where the second a tcj ► used the bo% nd

Kl yk• rys 1 2	 Kx l yk-	 I ? + Ky. 1 I	 .,^ 1?
nk k

: KMk + KA

and where the last stop used a bound % <'Kl for	 t % T/A which

In derivable Ly the method of either Lc xmm 1 or 2.

Thus

k+1 s ilk ('+Y) + 1La3/2^ % . of

which implies

Mk f K4 (T)A1/2^ k it T/A
	

(A9)

where K4 depends only on T and the constants in (Cl) .. (C2).
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;Aa) w" t!... i as t s t4ttiw-rst or ttw i t-ro4% roe itry rrce (k)) atA

Irnrw 2  QeV*V.

1+. Anziko • (CO to (CS). Define

YkO1 • Y k • r (Yk )A - 0(Yk)byk

v14c•rc bxk a# xkA#A • 
xKAR 

where  z  Is a vector Wiener l ►rocesit

(l...tx` • It). 'llivis the ciixt0butionx or , (yK) converev to thc)sg-• of

(y ) as h - .9 0 (for fix ,,A. 	L1).

Prvot. A proof can be easily smdolled alone, the lines of the

proof cX part of Theorem 1. p. 5c* (j), and we only sketch the out-

line. Write u	 'uk	 vnery cif han the dimension of the

0	 0
o0 (x) in (CS). Since o(x)	 , only the sequence (a^)

0	 a0(x)

enters into the definition of the sequence (yk) 
 and we can vr!te

00	 1%0

yk+l a rk + f(ftyk) (tn
k+ 

1 •tQ1c + o('Yk)uk
	 (A10)

where

0
a(x) •

o0(x)
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anJ

	

uk " Y	 9.

gel k4 1

Lot o0 have dtwnalon r0 . suNjwae that, for all unlroll4ly

Wunded (try , r ft^ , K) r0- vectors (lk
 )

V we have

lla K exp T, il► uk V= exp . 1 Y 1kXkA.	 (A 11)
h -s 0	 k	 k

Then the multidisK-nsional distributions of (%) convr rgc to those

of ( (zz
Mo 'kA) ) -

Giklau ,n ani 3kurokhoel used the: property (A11) to prove (in a

relatively straightforward vny) that the multidimensional listribu-

tiaras fir (ykj convcrge to those of (y k) 	 (see itMnn 2.3 0 p. 599-

601 (5), and the proof concerning convergence in distribution of

(*(tk)) to (("k)j on p. 601-642.) Of course, in (5), the %

Is scalar process (the vector extension is straightforward) and the
coefficient of f rk) is A. But, since It

nk♦1 nk
-t	 -+ A unifomly

In all variables as h -+0, the proof can easily be modified to

account for this minor difference.

Thus we will only prova (All). First, let us introduce some

notation. Let T/A = s, and divide each interval (1A, WA]

(i•0,.0.,a-1) into subintervals of length bh, vhere bh -+0 as

h -+ 0 and bh/bh -#a. Define the tuts of indices (subsets of I j ) I jr
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A

Iir k (a: t.4 ( ( I -OA # (r.l)t,h, (I - 1)A + rbn))

A - 1 ... ^^^ r •• I t .. . Wt,h 0 De fine.

u jr
	 Y W8

1141/r

Lot u i wvd % i be the ith empownts, reap., where
, 	,

i • r • r0 + la ..., r (the lost r0 cr nmionto) . (Note: that

r

Next, we show 1 im % i • 0 where
h -• 0

	

x 4/bn	
z. e

Shp i •F. tE I
 u jr, i

for same 1 > S > 0. In fact,

T	 2+6

'6; A, 1u11

WA

(u	 12+8 • 1 E	 12+4 5 b 	 ma 10 ' 2+0
Jr. i	

stI jr 	 .'2s ' i	 -D a4Ier as i

by

(Al2)
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wh- ry	 a ►, I  - 1Lh la uae • l, i u r - r0 4 1,,..,r. The invy"ality

ws ! Kh, 1 . r - ra • 1 ... r reil lc va h^c-.a
i

a^	 to0 (e k ) + 01 ti 1^`^)l ltekil • tk - ?(!k )AL k . 0(11))

v11101 0 	in turn, follova Pre.m ( (Sh,e)	 WO	 (C1) - (CS)-	 Thr 0(-) tesm

are w , l fu m in t k,	 arki E,I nry the lnat	 r0 CC' ajK41t'nta of t, f,

rea p. ,fern

	

T	
Lh.I t+e

8h 1 K S- -
0	 h

[Pt Y(a-1) denote the least o-alge- Lru measuring all

ul,---,um. l and let -V(m-l o t) be the least o-algebra wasurinr, in

addition, ual,..-,upt. Let A -- v and recall as a. T/A. Thus
h

.V(al-l,v -1) amahrures all the u
Jr 

except for the last one itEv

Nov,

E(exP Wu I or(M-1))an
V-1

• t(exv ilk i uas I -5r(M- 1 )]g( GxP Wauav^ -^(M1iv-1))

of A - B.

vhere



I

Since VI u I V(n-1 O v - 0 1 a 00 an -1

LX I X - K	 K( ( ^oytav ) 	 ! ^v- i))	 bh i► 0 	 s Kt+h

ve haves

(1 . ^O^^m 11 . K ) O H S (1- Y-M'h ♦ %V)

where %V In a real ombor

V a Kb  + K Vm I A:umv1 245
eov

Thus
	 •

^ b

AR • A (1 .	 h)
♦

where

i:v^ i ^av •

ContinuJ g the procedure gives

i
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^^ablr Y
AP -• (1 - --^--) + 1^

v
M 1 4 )'

^' 0- 1

D tin 11 Lr14.

exp 	 ^uk .- II ( 1 - - 7	 + w
^ 1	 L.•1

w v
NJ s E Y Mir.

6.1 r+» 1  

r
But M s	 I	 KB	 -*0*

i•r-r0+1 h,i
Thus, wi have proved (All). Q.T..D.

Lmmn 5. As^mc (Cl) . (CS). Got (j,6(t)) be the linear

intcryolatton of (y ) . The wultidimwnsionzl distributions of y°(t)

converge to thusr of xt ax A -4 0.-- 

The proof is well-known and is emitted.

Proof of Theorem 1. By Lie aas 1 - 5, the y finite dimensional

distributions of t h(t) converge to those of xt, at points of

continuity of the latter (for t f T). (9) follow# from Lama 2. Q.E.D.

Proof of Corollary 1. If T ( • ) - ware continuous on	 CIO.?] • A,
then the Corollary follows from Theorem 1, p. }81 (S), since our

Theorem 1 assures that the conditions of the cited theorem hold.

Corollary 2 ,* P. 579 of (S) asserts that the distribution of ?(Ih(0)



•

!,"

emv,.-t t;rtb to thAt nf Y(x (•)) for a! t Y( • ) mitt. itsw,,us w. p. t. W,

C(G,T) iC (A) the mutt Id1w-s ►.%tcv 1 dittributitn ►a of t h (t) convrrev

te) tl►U=iC of	 x t , aryl (1► ) thr nvasurem	 Nn	 a!'•* Vv"ly %7Cft W1t.	 (a)

is Implied by llivorrm I,	 UFA	 (t► )	 is	 also .	 since, by tho prr)cjf of

lliw,rrm 1. P. 581 s 	j!)], Weak caal ►ac tiles a of	 (Nn ) Is Iskp i w4 by (9)	 (or,

equivalently, by cquicws:inulty of	 X 	 an	 10,T) with probahility

arbitrarily elvsse to 1).	 niv last statrowtit of the corollary foitovn fruft

the prev Ious iMrt of the corollary. Q.X.D.

Proof of 11tro r"

equal s and so are the

v(XIM ) I& uniformly

(relative to N). x 

continuous v.p.l. on

Corollary 1,

e 2. Apr (CG) the last two terns of (10a) are

last two terms of (14b). Py nypothesis,

boun4rd w.p.l., and T n t is continuous w.p.le

In continuous in t w.p.1. Hence# xr1-1 is

C(O,,T); hence, (p(x,nl! ) is. Thus, by

IixV (R h ('n vd) -' xxm (x1Ylt )

as h -+ 0.

A sindlar conclusion for the convergence of the integral tots

follows !tree the continuity of

t
0 k(xa)do

in t. Q.E.D.
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it	 r..#, ^.	 orflrtr	 1'(t^^1.}	 1nr I ,x fih it nt.).	 pt.,

bf (t1 }^

1`(0410h) ? (1-1'(nth)) V • N(nth)

t % • 11(rith)(1-H0).

ri us

1,610h) s (I_,,))n
	

(A l 4)

which Implies

w

j ^ hd px h ) .♦0
T

as ? •+ wp unIfc►rwly in x p h. purtharwirs,

R jT kQ h (s))ds -+ 0x ,inTh

Rx(m(!h(^'sh)) - •(t h ( th))l -♦ 0

as T -^ w, unif0mly in x,h. (Al.5) and Theoarm 2 Imply the Theorem.

Q.R.Q.

t
s

1
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